
SURFACE CHARGE OF ILLINOIS COAL AND PYRITES FOR DRY EL.ECTROSTATIC CLEANING 

A. Mukherjee, D. Gidaspow, and D. T.  Wasan 

Chemical Engineering Department 
I l l i n o i s  I n s t i t u t e  of Technology 

Chicago, I l l i n o i s  60616 

Introduct ion 

Most of I l l i n o i s  coa l  cannot be burned d i r e c t l y  because i t s  s u l f u r  content  i s  
too high t o  m e e t  present  air pol lu t ion  requirements. 
Data Book on coal  conversion (21) lists t h e  p y r i t e ,  s u l f a t e  and organic  s u l f u r  
content of var ious I l l i n o i s  coals .  
i n  I l l i n o i s  coa l  i s  i n  the form of i ron  pyr i tes .  
I l l i n o i s  coals ,  such as I l l i n o i s  No. 2 coa l ,  is s u f f i c i e n t l y  low. t h a t  t h e  removal 
of i r o n  p y r i t e s  w i l l  produce compliance coa l  t h a t  can be  burned i n  pulver ized form. 

The I n s t i t u t e  of Gas Technology 

Generally more than 50% of t h e  s u l f u r  contained 
The organic  s u l f u r  content  of some 

Coal benef ic ia t ion  techniques were recent ly  reviewed by T s a i  (11) and Liu (20). 
Physical beneficiat ion methods can be c l a s s i f i e d  i n t o  w e t  and dry processes .  
processes such as  f r o t h  f l o t a t i o n  have gained commercial s t a t u s .  
methods of p y r i t e  removal such as e l e c t r o s t a t i c  o r  magnetic methods a r e  p o t e n t i a l l y  
more energy e f f i c i e n t  s i n c e  they avoid t h e  need of drying the  coal  before  combustion 
and a l s o  do not  use expensive sur fac tan ts .  

Wet 
However, dry 

E l e c t r o s t a t i c  methods used i n  the  pas t  involved expensive r o t o r  type machines 
and w e r e  designed based on only l imi ted  fundamental measurements ( Incule t ,  e t  a l . ,  
( 7 ), Moore, (13). 
f lu id ized  bed can continuously remove i r o n  p y r i t e s  from coal. The design and s c a l e  
up of such a system is based on the  f a c t  t h a t  t h e  e lec t rophore t ic  mobil i ty  of 
p y r i t e s  is much grea te r  than coa l ,  s ince  t h e  sur face  charge of p y r i t e s  i s  t e n  times 
t h a t  of coal. 
model of e l e c t r o f l u i d i z a t i o n  (Shih, et  a1.(17) ; Shih, (16)) t o  p r e d i c t  t h e  ex ten t  
of segregat ion i n  an e lec t rof lu id ized  bed. The objec t ive  of t h e  present  s tudy is to  
obta in  charge measurements of coa l  and p y r i t e s  which should be usefu l  i n  the design 
of e l e c t r o s t a t i c  separators .  

Gidaspow, e t  al. ( 4 )  have recent ly  shown t h a t  an e l e c t r o -  

The sur face  charge of p y r i t e s  and coa l  i s  used i n  a mathematical 

Apparatus and Procedure 

For measuring t h e  charge of the  p a r t i c l e s  a closed loop pneumatic system, shown 
The l i f t  l i n e ,  7.62 an i n  diameter and 6 meters  high, i n  Figure 1, was constructed.  

was made of Plexiglas .  
i n  t h e  top hopper. 
pressor  v i a  a honeycomb d i s t r i b u t o r .  
t ranspor t  l i n e  and were subsequently re turned t o  t h i s  l i n e  by means of a 2.54 cm. 
downcomer by gravi ty .  Earlier a screwfeeder (Gidaspow, e t  a l . ,  ( 4  ) )  w a s  used, but 
the  screwfeeder has a tendency t o  break up the  p a r t i c l e s  and thereby c r e a t i n g  ex- 
cess ive  amounts of dus t .  Another problem with t h e  screwfeeder was t h a t  its motor 
hea ts  up very quickly, and subsequently jams, when l a r g e  throughputs were used o r  
when the  a i r  flow rates were low. The s o l i d s  flow r a t e  could be adjusted by con- 
t r o l l i n g  valve 1, while t h e  gas flow rate could be control led by ad jus t ing  valve 2. 
A cyclone with a dust  bag was i n s t a l l e d  at the top t o  remove any dus t ,  which could 
otherwise c rea te  a f i r e  hazard. Flow r a t e s  through t h e  system could be measured by 
opening a sampling va lve  4. The charge of t h e  p a r t i c l e s  was measured by using a 
b a l l  probe, t h e  d e t a i l s  of which are shown i n  Figure 2. 
measurement are ava i lab le  (Boschung and Glor ,  ( 1 ) ;  Gajewski and Szaynor, ( 3  ); 
Kittaka et a l . ,  (8) and Saunders e t  a l . ,  (15)). but  t h e  b a l l  probe is simple, 
r e l i a b l e  and makes i r s i t u  on l i n e  measurements possible .  
similar t o  t h a t  used by So0 e t  al. Q 8 ) ,  is inser ted  i n t o  the  flow stream of t h e  

The p a r t i c l e s  whose charge w e  wish t o  measure, w e r e  loaded 
A i r  was blown through t h e  bottom of the  l i f t  l i n e  by a com- 

The s o l i d s  were l i f t e d  by t h e  air through the  

Other methods f o r  charge 

The probe which is 
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p a r t i c l e s .  
p a r t i c l e s .  The e lec t rometer  is a high impedance instrument which can measure 
cur ren ts  up to  10-13 amperes. 
tube in order  t o  avoid leakage of current .  To reduce background cur ren t ,  the  
ceramic tube w a s  aga in  enclosed in a copper tube such t h a t  the lead  t o  t h e  probe, 
the ceramic tube and t h e  copper tube formed concentr ic  cyl inders .  
a c t s  l i k e  a Faraday cage and reduces any dis turbances due t o  bui ld  up charges on the  
wal l s  of the  conveyor. The t i p  of t h e  b a l l  probe w a s  always kept  a t  the  axis of the  
l i f t  l i n e  unless  otherwise indicated.  When measurements of current  w e r e  taken in 
the  pneumatic conveyor, air  w a s  f i r s t  blown, and the cur ren t  s e t t i n g  of t h e  electro-  
meter was set t o  zero. P a r t i c l e s  were then blown along with t h e  air, and t h e  read- 
ing of the cur ren t  by the  electrometer  w a s  taken as  t h e  absolute  cur ren t  due to  t h e  
impact of the  p a r t i c l e s  on the  b a l l  probe. The probe and a l l  o ther  e l e c t r i c a l  con- 
nect ions were s t o r e d  i n  a lcohol  when they were not  in use,  and j u s t  before  use, they 
were cleaned wi th  a lcohol ,  acetone and f i n a l l y ,  with d i s t i l l e d  water. 

The probe p icks  up a cur ren t  which is proport ional  t o  the  charge of t h e  

The lead t o  t h e  b a l l  probe was enclosed in a ceramic 

The copper tube 

The r e l a t i o n  between cur ren t  and t h e  average charge of the  p a r t i c l e s  is 

i = qn 1) 

where i i s  the c u r r e n t  measured by the  electrometer ,  q is the  average charge of t h e  
p a r t i c l e ,  and n is t h e  number of p a r t i c l e s  s t r i k i n g  t h e  probe per  second. From t h e  
above r e l a t i o n  i t  is c l e a r  t h a t  the  number of p a r t i c l e s  s t r i k i n g  the  probe per second 
is still unknown. To measure the  quant i ty  n, t h e  output  of the electrometer  was 
connected t o  a H e w l e t t  Packard osci l loscope,  and an IBM personal  computer with an 
AID in te r face .  
put is amplified t o  a m a x i m u m  of th ree  v o l t s .  Anytime a p a r t i c l e  impacts on the  
probe, a spike w a s  observed on t h e  osci l loscope.  The number of peaks per  second 
gave the frequency of p a r t i c l e s  impacting the  probe. 
two d i f f e r e n t  ways using t h e  I B M  PC. I n  the  f i r s t  method, a power spectrum of t h e  
output  of the e lec t rometer  w a s  computed by using a Fas t  Fourier  Transform algorithm 
(FFT), and the frequency of the  maximum of t h e  power spectrum gave t h e  va lue  of n. 
I n  t h e  second method, whenever t h e  vol tage l e v e l  of t h e  output of t h e  electrometer  
crossed a c e r t a i n  threshold value,  a Schmidt t r i g g e r  in the  A/D converter  w a s  
ac t iva ted ,  which i n  t u r n  incremented a count. The number of times t h e  t r i g g e r  was 
ac t iva ted  per  second, gave the  frequency of p a r t i c l e s  s t r i k i n g  t h e  probe p e r  second. 
Both these methods produced a va lue  of n which agreed with each o ther  q u i t e  c losely.  
The use of the Schxnidt t r i g g e r  w a s  preferred,  s i n c e  i t  w a s  l e s s  t i m e  consuming, and 
occupied less memory s t o r a g e  space in t h e  computer. The use of t h e  FFT procedure 
was also complicated by t h e  f a c t  t h a t  p a r a s i t i c  f requencies  a l s o  produced maxirnas 
in t h e  power spectrum, which could sometimes be confused with t h e  frequencies  of 
the  p a r t i c l e s .  

The Kei thley electrometer has a b u i l t  i n  ampl i f ie r  so t h a t  i t s  out- 

This number was obtained in 

The poros i ty  or  t h e  volume f r a c t i o n  of p a r t i c l e s  flowing i n  the  pneumatic con- 
veyor, w a s  measured by an X-ray absorpt ion densitometer. 
assembly c o n s i s t s  of an X-ray source, a de tec tor ,  and a recording system. A 
schematic diagram of t h e  system is shown in Figure 3. 
detector  were kept  on e i t h e r  s i d e  of the t ranspor t  l i n e  on a movable tab le .  
t a b l e  was mounted on a v e r t i c a l  s c r e w  s h a f t ,  which w a s  dr iven by a r e v e r s i b l e  elec- 
t r ic motor. 
motor. 
having a half  l i f e  of 17.8 years .  
container  2.0 cent imeters  in diameter. The container  had a small window in the  
f r o n t  f o r  X-ray emissions. 
photoenergy between 1 2  and 23 KeV. 
t h e  i n t e n s i t y  of  t h e  X-rays t ransmit ted through the  pneumatic l i n e .  
diagram of the  d e t e c t o r  recorder  assembly is shown i n  Figure 4. 
s c i n t i l l a t i o n  d e t e c t o r  was connected sequent ia l ly  t o  a preamplif ier ,  a delay l i n e  
ampl i f ie r ,  a s i n g l e  channel  analyzer ,  and a timer counteruni t .  

The X-ray densitometer 

The X-ray source and the 
The 

The X-ray motor could be moved anywhere up and down by means of the  
The 200 m C i  X-ray source cons is t s  of a t i n y  capsule  of Curium-244 isotope 

The source w a s  w e l l  enclosed in a s t a i n l e s s  s t e e l  

The pr inc ipa l  emissions of t h e  source were X-rays, of 
A sodium iodide s c i n t i l l a t i o n  de tec tor  measured 

A schematic 
The output  of t h e  

This assembly could 
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count the number of photons of X-rays s t r i k i n g  the  s c i n t i l l a t i o n  de tec tor  per  u n i t  
time. 
be in te rpre ted  on an a r b i t r a r y  scale, as t h e  i n t e n s i t y  of the t ransmit ted X-rays. 
This a r b i t r a r y  sca le  was ca l ibra ted  t o  read the  voidage o r  porosi ty  d i r e c t l y .  To 
c a l i b r a t e  t h i s  sca le  t o  give values  of porosi ty ,  p a r t i c l e s  were placed between rect- 
angular containers  of known volume, and t h e  X-ray count w a s  recorded. This s t e p  was 
repeated f o r  var ious d i f f e r e n t  containers  t o  give a c a l i b r a t i o n  curve of known poro- 
s i t y .  The d e t a i l s  of the  c a l i b r a t i o n  a r e  reported by Luo (12) and Gidaspow e t  a l . ,  

As t h e  counting time w a s  f ixed at 1 0  seconds, the  reading on t h e  counter  could 

( 4 ) .  

The humidity of t h e  carrier gases was measured by i n s e r t i n g  a d i g i t a l  General 
Eastern model 1200 AP dew poin t  hygrometer in t h e  flow stream of t h e  p a r t i c l e s .  
The mater ia l s  used f o r  measurement of charge were i r o n  p y r i t e s  and coal .  
were obtained from Fischer  S c i e n t i f i c  Company. 
supplied by t h e  I l l i n o i s  S t a t e  Geological Survey. 
p a r t i c l e s  used were 270 pm. 
f u r t h e r  treatment. 

The mass flow r a t e  of p a r t i c l e s  can be  computed by using the  r e l a t i o n  

The p y r i t e s  
The coa l  used w a s  I l l i n o i s  6 coal ,  

The average s i z e  of both types of 
The charge of these  p a r t i c l e s  w a s  measured without  any 

-, 
where m is the mass flow. r is the  rad ius  of the  p a r t i c l e ,  p is t h e  p a r t i c l e  den- 
s i t y ,  d is the  diameter of the  probe, and R i s  the  rad ius  of’the pipe. 
equation, i t  is assumed t h a t  the  l o c a l  mass flow rate is constant  across  t h e  dia-  
meter of the  pipe. 

I n  t h e  above 

The ve loc i ty  of t h e  p a r t i c l e  can be computed by using the  mass balance equat ion 
f o r  steady feed r a t e  

- =  m F E V  
sR2 P s s 

3) 

where E is t h e  s o l i d  
ve loc i t?  t o  be computed, and R is the rad ius  of the  t ranspor t  l ine .  
ments reported here  were obtained in the  f u l l y  developed flow region where volumetr ic  
concentrat ion did not  change with height. 

is the  measured volumetric concentrat ion of t h e  s o l i d  phase, v 
A1H measure- 

Results and Discussion 

Figure 5 shows the  charge of p y r i t e  and coal as a funct ion of s o l i d  v e l o c i t y  

Although t h e  charges of both p y r i t e  and coa l  a r e  
a t  a constant  gas ve loc i ty  and humidity. 
subsequent f igures  i s  negative. 
negat ive,  there  is  an order  of magnitude d i f f e r e n c e  in t h e i r  values .  This shows 
t h a t  p y r i t e s  and coa l  ge t  charged s e l e c t i v e l y  and t h a t  e l e c t r o s t a t i c  separa t ion  of 
p a r t i c l e s  i s  feas ib le .  The e l e c t r i c  charge of both coa l  and p y r i t e s  increase  a s  a 
funct ion of s o l i d  v e l o c i t y ,  as  expected f o r  t r i b o e l e c t r i c  charging. 
e l e c t r o s t a t i c  separat ion experiment (Gidaspow e t  a l . ,  (4)). p y r i t e s  always moved 
t o  the  p o s i t i v e  e lec t rode  i n  grea te r  amounts than coa l ,  ind ica t ing  t h a t  p y r i t e s  were 
more negat ively charged than coal .  

The s ign  of charges shown here  and i n  

I n  a r e l a t e d  

Figures 6 and 7, show the  e f f e c t  of varying t h e  gas v e l o c i t i e s  f o r  t ranspor t  
of p y r i t e  and coal. 
t i o n s  of t h e  present  experimental setup,  no observable d i f fe rence  in charging due 
t o  var ia t ions  i n  gas ve loc i ty  was noticed. 
redesigned so t h a t  the  v e l o c i t i e s  could be var ied over much l a r g e r  ranges. 

Since the  range of g a s  v e l o c i t i e s  is small due t o  the  l imi ta -  

The present  experimental set up is being 
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Figures 8 and 9. show t h e  e f f e c t  of humidity on t h e  charging of coal  and py- 
When a p a r t i c l e  g e t s  charged by t r i b o e l e c t r i f i c a t i o n ,  the  amount of charge r i t e .  

t h a t  a p a r t i c l e  is capable  of re ta in ing  is dependent on t h e  ambient atmospheric 
condi t ions.  
re ta ined.  
t h e  charges accumulated on t h e  p a r t i c l e  begin to  leak back i n t o  t h e  atmosphere due 
t o  t h e  bombardment of water molecules. The &her t h e  humidity, the  grea te r  is t h e  
leakage of charge from t h e  p a r t i c l e s  t o  t h e  atmosphere. 
static separa t ion  of c o a l  would be optimum under dry condi t ions.  

Under d r y  condi t ions,  most of t h e  charge acquired by the p a r t i c l e s ,  is 
However, when the  humidity content  of t h e  surrounding atmosphere i s  high, 

This shows t h a t  e lec t ro-  

The e f f e c t  of p a r t i c l e  concentrat ion on charge of p y r i t e s  is shown in Figure 
I t  i s  observed t h a t  as t h e  concentrat ion increases  t h e  charge drops. 10. 

could be due t o  t h e  f a c t  t h a t  under d i l u t e  condi t ions,  more par t ic le-wal l  i n t e r -  
actions are poss ib le  than under concentrated condi t ions,  where p a r t i c l e - p a r t i c l e  
i n t e r a c t i o n s  are more common. 
homogeneous, they would a l s o  have similar work funct ions.  Therefore p a r t i c l e -  
p a r t i c l e  contac ts  w i l l  have l i t t l e  bear ing on the  charging of p a r t i c l e s .  
o t h e r  hand, t h e  work func t ions  of the p a r t i c l e  and t h e  w a l l  are much d i f f e r e n t ,  
hence the p r o b a b i l i t y  of t h e  p a r t i c l e  g e t t i n g  charged on contact  with the w a l l  is 
much la rger .  

This 

Under t h e  assumption t h a t  a l l  p a r t i c l e s  are nearly 

On the 

The amount of charge a p a r t i c l e  i s  capable of carrying is dependent on the  
s i z e  of t h e  p a r t i c l e  as seen  in Figure 11. 
conveying system shown i n  Figure 12. 
F i g u r e l ,  except t h a t  i t  is of rec tangular  cross-section. Larger p a r t i c l e s  are 
capable of carrying much higher  charges. 
by the p a r t i c l e  s u r f a c e  area, t h e  v a r i a t i o n  of charge as a funct ion of p a r t i c l e  
s i z e  i s  m i n i m a l ,  as seen i n  Figure 13. 
sur face  of t h e  p a r t i c l e s  take  p a r t  in the  t r i b o e l e c t r i f i c a t i o n  process. 

These d a t a  were taken in the  pneumatic 
This apparatus i s  similar t o  t h a t  shown in 

However when p a r t i c l e  charge is normalized 

This shows t h a t  only those e lec t rons  on t h e  

The r a d i a l  charge p r o f i l e  i n  the conveyor is shown i n  Figure 14. The charge 
a t  the center  of t h e  tube is constant ,  while  i t  drops off a t  the w a l l .  
be two reasons f o r  t h i s  observat ion.  
t h e  accumulated charge on t h e  w a l l  of t h e  conveyor, which is opposi te  t o  t h a t  of 
t h e  p a r t i c l e s .  The second reason is t h a t  t h e  v e l o c i t y  of t h e  p a r t i c l e s  c l o s e  t o  
t h e  wal l  is much lower than a t  t h e  center  of the  pipe (Nakamura and Capes, (14); 
Syamlal (19)), thus  the charge is smaller c lose  t o  t h e  wall, cons is ten t  wi th  the  
v a r i a t i o n  of the  charge wi th  ve loc i ty  shown in Figure 5. 

There could 
The f i r s t  is t h a t  t h e  probe is influenced by 

1 

Conclusions 

We have shown that t h e  electric charge of  i r o n  p y r i t e s  is general ly  an order 
of magnitude higher  than t h a t  of coal. 
s t a t i c  separa t ion  of i r o n  p y r i t e s  from coal .  
t h e  most s i g n i f i c a n t  e f f e c t  on t h e  p a r t i c l e  charge. 
and the p a r t i c l e  s i z e  a l s o  inf luence t h e  charge of the p a r t i c l e s .  
dependence of the  charge of p y r i t e s  and coal  on p a r t i c l e  ve loc i ty  suggests  t h a t  t h e  
electric charge is acquired by t r i b o e l e c t r i f i c a t i o n  which is analogous although not  
i d e n t i c a l  t o  streaming c u r r e n t  found in c o l l o i d a l  suspensions in l iqu id .  

This higher  charge is the  b a s i s  of e lec t ro-  
Humidity of the  c a r r i e r  gases has 

The s o l i d  ve loc i ty ,  porosi ty  
The near ly  l i n e a r  
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Figurc l. Pneumatic Conveying Syster,. 
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Figure 2. Schematic Diagram of Ball Probe. 
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Figure 3 .  Schematic Diagram of 
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Figure 4 .  Line Diagram for X-ray Recorder Assembly. 
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